Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Genet ; 40(4): 364-378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453542

RESUMO

Dominance is usually considered a constant value that describes the relative difference in fitness or phenotype between heterozygotes and the average of homozygotes at a focal polymorphic locus. However, the observed dominance can vary with the genetic background of the focal locus. Here, alleles at other loci modify the observed phenotype through position effects or dominance modifiers that are sometimes associated with pathogen resistance, lineage, sex, or mating type. Theoretical models have illustrated how variable dominance appears in the context of multi-locus interaction (epistasis). Here, we review empirical evidence for variable dominance and how the observed patterns may be captured by proposed epistatic models. We highlight how integrating epistasis and dominance is crucial for comprehensively understanding adaptation and speciation.


Assuntos
Epistasia Genética , Modelos Genéticos , Heterozigoto , Fenótipo , Homozigoto , Alelos
2.
Bioinform Adv ; 3(1): vbad164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075480

RESUMO

Motivation: Understanding the population genetics of complex polygenic traits during adaptation is challenging. Results: Here, we implement a forward-in-time population-genetic simulator (STUN) based on Wright-Fisher dynamics. STUN is a flexible and user-friendly software package for simulating the polygenic adaptation of recombining haploid populations using either new mutations or standing genetic variation. STUN assumes that populations adapt to sudden environmental changes by undergoing selection on a new fitness landscape. With pre-implemented fitness landscape models like Rough Mount Fuji, NK, Block, additive, and House-of-Cards, users can explore the effect of different levels of epistasis (ruggedness of the fitness landscape). Custom fitness landscapes and recombination maps can also be defined. STUN empowers both experimentalists and advanced programmers to study the evolution of complex polygenic traits and to dissect the adaptation process. Availability and implementation: STUN is implemented in Rust. Its source code is available at https://github.com/banklab/STUN and archived on Zenodo under doi: 10.5281/zenodo.10246377. The repository includes a link to the software's manual and binary files for Linux, macOS and Windows.

3.
Ecol Evol ; 13(8): e10295, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37529585

RESUMO

Population growth is a fundamental process in ecology and evolution. The population size dynamics during growth are often described by deterministic equations derived from kinetic models. Here, we simulate several population growth models and compare the size averaged over many stochastic realizations with the deterministic predictions. We show that these deterministic equations are generically bad predictors of the average stochastic population dynamics. Specifically, deterministic predictions overestimate the simulated population sizes, especially those of populations starting with a small number of individuals. Describing population growth as a stochastic birth process, we prove that the discrepancy between deterministic predictions and simulated data is due to unclosed-moment dynamics. In other words, the deterministic approach does not consider the variability of birth times, which is particularly important with small population sizes. We show that some moment-closure approximations describe the growth dynamics better than the deterministic prediction. However, they do not reduce the error satisfactorily and only apply to some population growth models. We explicitly solve the stochastic growth dynamics, and our solution applies to any population growth model. We show that our solution exactly quantifies the dynamics of a community composed of different strains and correctly predicts the fixation probability of a strain in a serial dilution experiment. Our work sets the foundations for a more faithful modeling of community and population dynamics. It will allow the development of new tools for a more accurate analysis of experimental and empirical results, including the inference of important growth parameters.

4.
Evolution ; 77(10): 2162-2172, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37459183

RESUMO

Hybridization opens a unique window for observing speciation mechanisms and is a potential engine of speciation. One controversially discussed outcome of hybridization is homoploid hybrid speciation by reciprocal sorting, where a hybrid population maintains a mixed combination of the parental genetic incompatibilities, preventing further gene exchange between the newly formed population and the two parental sources. Previous work showed that, for specific linkage architectures (i.e., the genomic location and order of hybrid incompatibilities), reciprocal sorting could reliably result in hybrid speciation. Yet, the sorting of incompatibilities creates a risk of population extinction. To understand how the demographic consequences of the purging of incompatibilities interact with the formation of a hybrid species, we model an isolated hybrid population resulting from a single admixture event. We study how population size, linkage architecture, and the strength of the incompatibility affect survival of the hybrid population, resolution/purging of the genetic incompatibilities and the probability of observing hybrid speciation. We demonstrate that the extinction risk is highest for intermediately strong hybrid incompatibilities. In addition, the linkage architecture displaying the highest hybrid speciation probabilities changes drastically with population size. Overall, this indicates that population dynamics can strongly affect the outcome of hybridization and the hybrid speciation probability.


Assuntos
Especiação Genética , Modelos Genéticos , Hibridização Genética , Dinâmica Populacional , Probabilidade
5.
Proc Biol Sci ; 290(1999): 20230770, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37253425

RESUMO

No environment is constant over time, and environmental fluctuations impact the outcome of evolutionary dynamics. Survival of a population not adapted to some environmental conditions is threatened unless, for example, a mutation rescues it, an eco-evolutionary process termed evolutionary rescue. We here investigate evolutionary rescue in an environment that fluctuates between a favourable state, in which the population grows, and a harsh state, in which the population declines. We develop a stochastic model that includes both population dynamics and genetics. We derive analytical predictions for the mean extinction time of a non-adapted population given that it is not rescued, the probability of rescue by a mutation, and the mean appearance time of a rescue mutant, which we validate using numerical simulations. We find that stochastic environmental fluctuations, resulting in quasi-periodic environmental changes, accelerate extinction and hinder evolutionary rescue compared with deterministic environmental fluctuations, resulting in periodic environmental changes. We demonstrate that high equilibrium population sizes and per capita growth rates maximize the chances of evolutionary rescue. We show that an imperfectly harsh environment, which does not fully prevent births but makes the death rate to birth rate ratio much greater than unity, has almost the same rescue probability as a perfectly harsh environment, which fully prevents births. Finally, we put our results in the context of antimicrobial resistance and conservation biology.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Adaptação Fisiológica/genética , Meio Ambiente , Mutação , Dinâmica Populacional
6.
Philos Trans R Soc Lond B Biol Sci ; 378(1877): 20220058, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37004727

RESUMO

Predicting mutational effects is essential for the control of antibiotic resistance (ABR). Predictions are difficult when there are strong genotype-by-environment (G × E), gene-by-gene (G × G or epistatic) or gene-by-gene-by-environment (G × G × E) interactions. We quantified G × G × E effects in Escherichia coli across environmental gradients. We created intergenic fitness landscapes using gene knock-outs and single-nucleotide ABR mutations previously identified to vary in the extent of G × E effects in our environments of interest. Then, we measured competitive fitness across a complete combinatorial set of temperature and antibiotic dosage gradients. In this way, we assessed the predictability of 15 fitness landscapes across 12 different but related environments. We found G × G interactions and rugged fitness landscapes in the absence of antibiotic, but as antibiotic concentration increased, the fitness effects of ABR genotypes quickly overshadowed those of gene knock-outs, and the landscapes became smoother. Our work reiterates that some single mutants, like those conferring resistance or susceptibility to antibiotics, have consistent effects across genetic backgrounds in stressful environments. Thus, although epistasis may reduce the predictability of evolution in benign environments, evolution may be more predictable in adverse environments. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.


Assuntos
Antibacterianos , Epistasia Genética , Antibacterianos/farmacologia , Escherichia coli/genética , Genótipo , Temperatura , Mutação , Aptidão Genética
7.
Mol Ecol ; 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855836

RESUMO

How does standing genetic variation affect polygenic adaptation in recombining populations? Despite a large body of work in quantitative genetics, epistatic and weak additive fitness effects among simultaneously segregating genetic variants are difficult to capture experimentally or to predict theoretically. In this study, we simulated adaptation on fitness landscapes with tunable ruggedness driven by standing genetic variation in recombining populations. We confirmed that recombination hinders the movement of a population through a rugged fitness landscape. When surveying the effect of epistasis on the fixation of alleles, we found that the combined effects of high ruggedness and high recombination probabilities lead to preferential fixation of alleles that had a high initial frequency. This indicates that positive epistatic alleles escape from being broken down by recombination when they start at high frequency. We further extract direct selection coefficients and pairwise epistasis along the adaptive path. When taking the final fixed genotype as the reference genetic background, we observe that, along the adaptive path, beneficial direct selection appears stronger and pairwise epistasis weaker than in the underlying fitness landscape. Quantitatively, the ratio of epistasis and direct selection is smaller along the adaptive path ( ≈ 1 $$ \approx 1 $$ ) than expected. Thus, adaptation on a rugged fitness landscape may lead to spurious signals of direct selection generated through epistasis. Our study highlights how the interplay of epistasis and recombination constrains the adaptation of a diverse population to a new environment.

8.
bioRxiv ; 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36824868

RESUMO

Hybridization opens a unique window for observing speciation mechanisms and is a potential engine of speciation. One controversially discussed outcome of hybridization is homoploid hybrid speciation by reciprocal sorting, where a hybrid population maintains a mixed combination of the parental genetic incompatibilities, preventing further gene exchange between the newly formed population and the two parental sources. Previous work showed that, for specific linkage architectures (i.e., the genomic location and order of hybrid incompatibilities), reciprocal sorting could reliably result in hybrid speciation. Yet, the sorting of incompatibilities creates a risk of population extinction. To understand how demographic consequences of the purging of incompatibilities interact with the formation of a hybrid species, we model an isolated hybrid population resulting from a single admixture event. We study how population size, linkage architecture and the strength of the incompatibility affect survival of the hybrid population, resolution/purging of the genetic incompatibilities and the probability of observing hybrid speciation. We demonstrate that the extinction risk is highest for intermediately strong hybrid incompatibilities. In addition, the linkage architecture displaying the highest hybrid speciation probabilities changes drastically with population size. Overall, this indicates that population dynamics can strongly affect the outcome of hybridization and the hybrid speciation probability.

9.
Environ Microbiome ; 18(1): 8, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788626

RESUMO

BACKGROUND: Microbial communities in recirculating aquaculture systems (RAS) play a role in system success, nutrient cycling, and water quality. Considering the increasing socio-economic role of fish farming, e.g., regarding food security, an in-depth understanding of aquaculture microbial communities is also relevant from a management perspective, especially regarding the growth, development, and welfare of the farmed animal. However, the current data on the composition of microbial communities within RAS is patchy, which is partly attributable to diverging method choices that render comparative analyses challenging. Therefore, there is a need for accurate, standardized, and user-friendly methods to study microbial communities in aquaculture systems. RESULTS: We compared sequencing approach performances (3 types of 16S short amplicon sequencing, PacBio long-read amplicon sequencing, and amplification-free shotgun metagenomics) in the characterization of microbial communities in two commercial RAS fish farms. Results showed that 16S primer choice and amplicon length affect some values (e.g., diversity measures, number of assigned taxa or distinguishing ASVs) but have no impact on spatio-temporal patterns between sample types, farms and time points. This implies that 16S rRNA approaches are adequate for community studies. The long-read amplicons underperformed regarding the quantitative resolution of spatio-temporal patterns but were suited to identify functional services, e.g., nitrification cycling and the detection of pathogens. Finally, shotgun metagenomics extended the picture to fungi, viruses, and bacteriophages, opening avenues for exploring inter-domain interactions. All sequencing datasets agreed on major prokaryotic players, such as Actinobacteriota, Bacteroidota, Nitrospirota, and Proteobacteria. CONCLUSION: The different sequencing approaches yielded overlapping and highly complementary results, with each contributing unique data not obtainable with the other approaches. We conclude that a tiered approach constitutes a strategy for obtaining the maximum amount of information on aquaculture microbial communities and can inform basic research on community evolution dynamics. For specific and/or applied questions, single-method approaches are more practical and cost-effective and could lead to better farm management practices.

10.
Evol Appl ; 16(1): 3-21, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699126

RESUMO

Evolution has traditionally been a historical and descriptive science, and predicting future evolutionary processes has long been considered impossible. However, evolutionary predictions are increasingly being developed and used in medicine, agriculture, biotechnology and conservation biology. Evolutionary predictions may be used for different purposes, such as to prepare for the future, to try and change the course of evolution or to determine how well we understand evolutionary processes. Similarly, the exact aspect of the evolved population that we want to predict may also differ. For example, we could try to predict which genotype will dominate, the fitness of the population or the extinction probability of a population. In addition, there are many uses of evolutionary predictions that may not always be recognized as such. The main goal of this review is to increase awareness of methods and data in different research fields by showing the breadth of situations in which evolutionary predictions are made. We describe how diverse evolutionary predictions share a common structure described by the predictive scope, time scale and precision. Then, by using examples ranging from SARS-CoV2 and influenza to CRISPR-based gene drives and sustainable product formation in biotechnology, we discuss the methods for predicting evolution, the factors that affect predictability and how predictions can be used to prevent evolution in undesirable directions or to promote beneficial evolution (i.e. evolutionary control). We hope that this review will stimulate collaboration between fields by establishing a common language for evolutionary predictions.

11.
Ecol Evol ; 12(7): e9046, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35813923

RESUMO

Mutational meltdown describes an eco-evolutionary process in which the accumulation of deleterious mutations causes a fitness decline that eventually leads to the extinction of a population. Possible applications of this concept include medical treatment of RNA virus infections based on mutagenic drugs that increase the mutation rate of the pathogen. To determine the usefulness and expected success of such an antiviral treatment, estimates of the expected time to mutational meltdown are necessary. Here, we compute the extinction time of a population under high mutation rates, using both analytical approaches and stochastic simulations. Extinction is the result of three consecutive processes: (a) initial accumulation of deleterious mutations due to the increased mutation pressure; (b) consecutive loss of the fittest haplotype due to Muller's ratchet; (c) rapid population decline toward extinction. We find accurate analytical results for the mean extinction time, which show that the deleterious mutation rate has the strongest effect on the extinction time. We confirm that intermediate-sized deleterious selection coefficients minimize the extinction time. Finally, our simulations show that the variation in extinction time, given a set of parameters, is surprisingly small.

12.
Genome Biol Evol ; 14(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35567483

RESUMO

Epigenetic regulation of gene expression allows for the emergence of distinct phenotypic states within the clonal population. Due to the instability of epigenetic inheritance, these phenotypes can intergenerationally switch between states in a stochastic manner. Theoretical studies of evolutionary dynamics predict that the phenotypic heterogeneity enabled by this rapid epigenetic switching between gene expression states would be favored under fluctuating environmental conditions, whereas genetic mutations, as a form of stable inheritance system, would be favored under a stable environment. To test this prediction, we engineered switcher and non-switcher yeast strains, in which the uracil biosynthesis gene URA3 is either continually expressed or switched on and off at two different rates (slow and fast switchers). Competitions between clones with an epigenetically controlled URA3 and clones without switching ability (SIR3 knockout) show that the switchers are favored in fluctuating environments. This occurs in conditions where the environments fluctuate at similar rates to the rate of switching. However, in stable environments, but also in environments with fluctuation frequency higher than the rate of switching, we observed that genetic changes dominated. Remarkably, epigenetic clones with a high, but not with a low, rate of switching can coexist with non-switchers even in a constant environment. Our study offers an experimental proof of concept that helps defining conditions of environmental fluctuation under which epigenetic switching provides an advantage.


Assuntos
Meio Ambiente , Epigênese Genética , Adaptação Fisiológica/genética , Evolução Biológica , Fenótipo , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae
13.
PLoS Genet ; 18(3): e1010120, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35344560

RESUMO

Dobzhansky-Muller incompatibilities (DMIs) are a major component of reproductive isolation between species. DMIs imply negative epistasis and are exposed when two diverged populations hybridize. Mapping the locations of DMIs has largely relied on classical genetic mapping. Approaches to date are hampered by low power and the challenge of identifying DMI loci on the same chromosome, because strong initial linkage of parental haplotypes weakens statistical tests. Here, we propose new statistics to infer negative epistasis from haplotype frequencies in hybrid populations. When two divergent populations hybridize, the variance in heterozygosity at two loci decreases faster with time at DMI loci than at random pairs of loci. When two populations hybridize at near-even admixture proportions, the deviation of the observed variance from its expectation becomes negative for the DMI pair. This negative deviation enables us to detect intermediate to strong negative epistasis both within and between chromosomes. In practice, the detection window in hybrid populations depends on the demographic scenario, the recombination rate, and the strength of epistasis. When the initial proportion of the two parental populations is uneven, only strong DMIs can be detected with our method unless migration prevents parental haplotypes from being lost. We use the new statistics to infer candidate DMIs from three hybrid populations of swordtail fish. We identify numerous new DMI candidates, some of which are inferred to interact with several loci within and between chromosomes. Moreover, we discuss our results in the context of an expected enrichment in intrachromosomal over interchromosomal DMIs.


Assuntos
Especiação Genética , Modelos Genéticos , Animais , Haplótipos/genética , Heterozigoto , Hibridização Genética , Isolamento Reprodutivo
14.
PLoS Comput Biol ; 17(5): e1008765, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33979341

RESUMO

The presence of extra centrioles, termed centrosome amplification, is a hallmark of cancer. The distribution of centriole numbers within a cancer cell population appears to be at an equilibrium maintained by centriole overproduction and selection, reminiscent of mutation-selection balance. It is unknown to date if the interaction between centriole overproduction and selection can quantitatively explain the intra- and inter-population heterogeneity in centriole numbers. Here, we define mutation-selection-like models and employ a model selection approach to infer patterns of centriole overproduction and selection in a diverse panel of human cell lines. Surprisingly, we infer strong and uniform selection against any number of extra centrioles in most cell lines. Finally we assess the accuracy and precision of our inference method and find that it increases non-linearly as a function of the number of sampled cells. We discuss the biological implications of our results and how our methodology can inform future experiments.


Assuntos
Centrossomo/patologia , Modelos Biológicos , Evolução Biológica , Linhagem Celular , Proliferação de Células , Centríolos/genética , Centríolos/patologia , Biologia Computacional , Humanos , Conceitos Matemáticos , Mutação , Neoplasias/genética , Neoplasias/patologia , Dinâmica não Linear , Seleção Genética
15.
Evolution ; 75(5): 978-988, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33870499

RESUMO

If there are no constraints on the process of speciation, then the number of species might be expected to match the number of available niches and this number might be indefinitely large. One possible constraint is the opportunity for allopatric divergence. In 1981, Felsenstein used a simple and elegant model to ask if there might also be genetic constraints. He showed that progress towards speciation could be described by the build-up of linkage disequilibrium among divergently selected loci and between these loci and those contributing to other forms of reproductive isolation. Therefore, speciation is opposed by recombination, because it tends to break down linkage disequilibria. Felsenstein then introduced a crucial distinction between "two-allele" models, which are subject to this effect, and "one-allele" models, which are free from the recombination constraint. These fundamentally important insights have been the foundation for both empirical and theoretical studies of speciation ever since.


Assuntos
Especiação Genética , Desequilíbrio de Ligação , Animais , Evolução Biológica , Modelos Teóricos , Recombinação Genética , Isolamento Reprodutivo
16.
PLoS Genet ; 17(3): e1009411, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33661924

RESUMO

Chromosomal inversions contribute widely to adaptation and speciation, yet they present a unique evolutionary puzzle as both their allelic content and frequency evolve in a feedback loop. In this simulation study, we quantified the role of the allelic content in determining the long-term fate of the inversion. Recessive deleterious mutations accumulated on both arrangements with most of them being private to a given arrangement. This led to increasing overdominance, allowing for the maintenance of the inversion polymorphism and generating strong non-adaptive divergence between arrangements. The accumulation of mutations was mitigated by gene conversion but nevertheless led to the fitness decline of at least one homokaryotype under all considered conditions. Surprisingly, this fitness degradation could be permanently halted by the branching of an arrangement into multiple highly divergent haplotypes. Our results highlight the dynamic features of inversions by showing how the non-adaptive evolution of allelic content can play a major role in the fate of the inversion.


Assuntos
Inversão Cromossômica , Mutação , Evolução Molecular , Conversão Gênica , Rearranjo Gênico , Haplótipos , Modelos Genéticos
17.
Mol Biol Evol ; 38(2): 368-379, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32871012

RESUMO

The distribution of fitness effects (DFEs) of new mutations across different environments quantifies the potential for adaptation in a given environment and its cost in others. So far, results regarding the cost of adaptation across environments have been mixed, and most studies have sampled random mutations across different genes. Here, we quantify systematically how costs of adaptation vary along a large stretch of protein sequence by studying the distribution of fitness effects of the same ≈2,300 amino-acid changing mutations obtained from deep mutational scanning of 119 amino acids in the middle domain of the heat shock protein Hsp90 in five environments. This region is known to be important for client binding, stabilization of the Hsp90 dimer, stabilization of the N-terminal-Middle and Middle-C-terminal interdomains, and regulation of ATPase-chaperone activity. Interestingly, we find that fitness correlates well across diverse stressful environments, with the exception of one environment, diamide. Consistent with this result, we find little cost of adaptation; on average only one in seven beneficial mutations is deleterious in another environment. We identify a hotspot of beneficial mutations in a region of the protein that is located within an allosteric center. The identified protein regions that are enriched in beneficial, deleterious, and costly mutations coincide with residues that are involved in the stabilization of Hsp90 interdomains and stabilization of client-binding interfaces, or residues that are involved in ATPase-chaperone activity of Hsp90. Thus, our study yields information regarding the role and adaptive potential of a protein sequence that complements and extends known structural information.


Assuntos
Adaptação Biológica , Interação Gene-Ambiente , Aptidão Genética , Proteínas de Choque Térmico HSP90/genética , Mutação , Saccharomyces cerevisiae
18.
Philos Trans R Soc Lond B Biol Sci ; 375(1806): 20190532, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32654650

RESUMO

Gene flow tends to impede the accumulation of genetic divergence. Here, we determine the limits for the evolution of postzygotic reproductive isolation in a model of two populations that are connected by gene flow. We consider two selective mechanisms for the creation and maintenance of a genetic barrier: local adaptation leads to divergence among incipient species due to selection against migrants, and Dobzhansky-Muller incompatibilities (DMIs) reinforce the genetic barrier through selection against hybrids. In particular, we are interested in the maximum strength of the barrier under a limited amount of local adaptation, a challenge that many incipient species may initially face. We first confirm that with classical two-locus DMIs, the maximum amount of local adaptation is indeed a limit to the strength of a genetic barrier. However, with three or more loci and cryptic epistasis, this limit holds no longer. In particular, we identify a minimal configuration of three epistatically interacting mutations that is sufficient to confer strong reproductive isolation. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.


Assuntos
Adaptação Biológica , Fluxo Gênico , Especiação Genética , Traços de História de Vida , Isolamento Reprodutivo , Modelos Genéticos
19.
Elife ; 92020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32129763

RESUMO

Gene-environment interactions have long been theorized to influence molecular evolution. However, the environmental dependence of most mutations remains unknown. Using deep mutational scanning, we engineered yeast with all 44,604 single codon changes encoding 14,160 amino acid variants in Hsp90 and quantified growth effects under standard conditions and under five stress conditions. To our knowledge, these are the largest determined comprehensive fitness maps of point mutants. The growth of many variants differed between conditions, indicating that environment can have a large impact on Hsp90 evolution. Multiple variants provided growth advantages under individual conditions; however, these variants tended to exhibit growth defects in other environments. The diversity of Hsp90 sequences observed in extant eukaryotes preferentially contains variants that supported robust growth under all tested conditions. Rather than favoring substitutions in individual conditions, the long-term selective pressure on Hsp90 may have been that of fluctuating environments, leading to robustness under a variety of conditions.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Interação Gene-Ambiente , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adaptação Fisiológica , Epistasia Genética , Aptidão Genética , Proteínas de Choque Térmico HSP90/genética , Modelos Moleculares , Mutação , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico
20.
PLoS Biol ; 18(3): e3000617, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32155146

RESUMO

Bacteria generally live in species-rich communities, such as the gut microbiota. Yet little is known about bacterial evolution in natural ecosystems. Here, we followed the long-term evolution of commensal Escherichia coli in the mouse gut. We observe the emergence of mutation rate polymorphism, ranging from wild-type levels to 1,000-fold higher. By combining experiments, whole-genome sequencing, and in silico simulations, we identify the molecular causes and explore the evolutionary conditions allowing these hypermutators to emerge and coexist within the microbiota. The hypermutator phenotype is caused by mutations in DNA polymerase III proofreading and catalytic subunits, which increase mutation rate by approximately 1,000-fold and stabilise hypermutator fitness, respectively. Strong mutation rate variation persists for >1,000 generations, with coexistence between lineages carrying 4 to >600 mutations. The in vivo molecular evolution pattern is consistent with fitness effects of deleterious mutations sd ≤ 10-4/generation, assuming a constant effect or exponentially distributed effects with a constant mean. Such effects are lower than typical in vitro estimates, leading to a low mutational load, an inference that is observed in in vivo and in vitro competitions. Despite large numbers of deleterious mutations, we identify multiple beneficial mutations that do not reach fixation over long periods of time. This indicates that the dynamics of beneficial mutations are not shaped by constant positive Darwinian selection but could be explained by other evolutionary mechanisms that maintain genetic diversity. Thus, microbial evolution in the gut is likely characterised by partial sweeps of beneficial mutations combined with hitchhiking of slightly deleterious mutations, which take a long time to be purged because they impose a low mutational load. The combination of these two processes could allow for the long-term maintenance of intraspecies genetic diversity, including mutation rate polymorphism. These results are consistent with the pattern of genetic polymorphism that is emerging from metagenomics studies of the human gut microbiota, suggesting that we have identified key evolutionary processes shaping the genetic composition of this community.


Assuntos
Microbioma Gastrointestinal/genética , Taxa de Mutação , Adaptação Fisiológica/genética , Animais , Antibacterianos/farmacologia , DNA Polimerase III/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Microrganismos Geneticamente Modificados , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...